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Abstract

Network information discovery protocols are integral to enabling network function of any
distributed network. One particular difficulty is the spread of trustworthy and unbiased
information in an efficient and verifiable way. These problems are especially of interest in the
realm of anonymous networking.

Previous works and networks, such as the centralized Tor and the decentralized Octopus
DHT, have issues regarding scalability. In addition, although Tor has made efforts to route
traffic in a bandwidth aware manner, there has been little focus on efficient bandwidth aware
routing in fully decentralized solutions. This thesis shows how to extend and modify an
existing solution, known as GuardedGossip, to distribute network information in an efficient,
scalable, and bandwidth aware manner.

GossipChain presents novel verifiable trust chains, using previous works’ ideas of witness list
checks and bounds checking. Additionally, it incorporates a way of route selection which
accounts for node bandwidth to allow routing in a bandwidth aware way. Through further
use of the trust chains, it is shown that via new checks known as the spot check and lineage
check, network members can actively lower their exposure to malicious nodes.

iii





Acknowledgements

Firstly, I would like to thank my professors at the Brandenburg University of Technology for
supporting my education, and further Prof. Panchenko for allowing me to write this thesis
at the chair of IT Security. Then I would like to give particular and special thanks to my
advisors Asya Mitseva and Torsten Ziemann for their consistent encouragement, reviews,
advice, and support in finishing this work during a tough year, and their instrumental role
in helping to ask the right questions in refining and defining the approach outlined in this
thesis. My friends have my gratitude for their consistent support, whether in the form of
encouragement, or more direct discussions. Particularly, Neil Chiragdin for helping me with
proofreading and grammar, and Adam Rinder and Tomi Jerenko for reviewing it for technical
clarity. Lastly, Levent Afsar who endured an onslaught of practice presentations.

v





Contents

1 Introduction 1

2 Background 3
2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Onion Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Private Information Retrieval and Oblivious Transfer . . . . . . . . . . . . . . 4
2.4 Distributed Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.1 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Kademlia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Gossip Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Common Attacks on Network Information Discovery Solutions . . . . . . . . 12

2.7.1 Range Estimation Attack . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7.2 Eclipse Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7.3 Bridging and Fingerprinting Attacks . . . . . . . . . . . . . . . . . . . 12
2.7.4 Sybil Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7.5 Denial of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Related Work 15
3.1 Client-Server-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Structured Peer-to-peer-based Approaches . . . . . . . . . . . . . . . . . . . . 20
3.3 Random Walk-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Approach 29
4.1 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Node Identifier Assignment . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Underlying DHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 NISAN and GuardedGossip . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



Contents

4.3.4 Bounds Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.5 Witness List Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.6 Lineage Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.7 Spot Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.8 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Introducing GossipChain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Outline of a GossipChain . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Network Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3 Stabilization and Churn . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.4 Circuit Creation and Bandwidth Consideration . . . . . . . . . . . . . 38

5 Evaluation 41
5.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Security and Success in the Context of GossipChain . . . . . . . . . . 43

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1 Completeness and Connectivity . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Entropy and Randomness . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.4 Churn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.5 Bandwidth-aware Circuit Building . . . . . . . . . . . . . . . . . . . . 53
5.2.6 Active Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion 63

A Witness List Check Algorithm 65

B Bounds Check Algorithm 67

C Spot Check Algorithm 69

D Acronyms 71

List of Figures 73

List of Tables 75

Bibliography 77

viii



1 Introduction

In the modern era of the Internet age, communication has been commodified. No longer simply
a personal or private endeavor, open lines of communication have become easily monitored,
the content therein representing both literal and figurative gold mines for corporations
and governments. Current events have brought this knowledge to the fore in common
consciousness, both from a political perspective [1, 2, 3, 4], and a private one [5, 6]. Whether
for nefarious, virtuous, or even just financial purposes, ever increasing numbers of people
believe their network communications are being watched [7].

As such, today, more people than ever are seeking out and using anonymization networks
while browsing the Internet. Even more than the increased paranoia after various revelations
of government and private surveillance of citizens’ data [8, 9], anonymized communication
is seen as a defense against hackers, and pursuant to a desire to protect and advance civil
liberties. This also leaves out the numerous criminal enterprises who would seek to create
and maintain these networks. Essentially, any person or entity that has a vested interest in
protecting their identity online has a vested interest in the technologies which can hide that
identity.

Any technology which claims to provide anonymization of the initiator must provide provable
obfuscation at least of the source of Internet traffic, which demands that direct communication
from source to destination not occur. Instead, traffic must be relayed over various “hops”
from one node in a network to another, and eventually reach the destination, without an
observer being sure beyond a reasonable doubt who initially sent the traffic.

Many different proposals exist to solve this dilemma, and there are provably-anonymous
networks which may be able to prevent even ardent, dedicated, state-level actors, such as
Mix-based systems [10] which are high latency, or centralized low-latency systems trusted for
more immediate or even government communications needs, like Tor [11]. However, each of
these networks involves significant tradeoffs either in robustness (for example, a resistance to
censorship), protection against various adversarial attacks, or in communications delays. As
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1 Introduction

such, it is still an openly researched problem to have a provably anonymous network resistant
to attacks and censorship, which is low latency and distributed.

The desire for anonymous distributed networks is not just for the sake of research, it will
have significant real world impact. The current situation of relying on centralized anonymous
network topologies for near real-time communication is fast becoming untenable. Tor’s
unprecedented growth as the preeminent anonymization proxy in the world, will eventually
cause the network to waste most of its resources determining, sharing, and maintaining state,
even with recent changes in the directory protocol specification [11, 12]. Other networks
crafted with similar goals to Tor, like Tarzan [13], similarly have theoretical limits.

Furthermore, to the author’s knowledge, the combination of significant bandwidth consider-
ation with anonymization networks is an open problem. Therefore, this thesis introduces
GossipChain a network information discovery solution which promises to enable communica-
tion with anonymity guarantees and bandwidth consideration at least as good as Tor [11],
while improving upon previous solutions’ abilities to prevent unintentional routing through
malicious nodes, all while not requiring total knowledge of network state. This is done
largely by modifying and extending the network information discovery protocol introduced
by GuardedGossip [14]. The extensions allow for gossiped information to be trusted, and
introduce new active and passive malicious actor protections through trust chains.

2



2 Background

Digital communication networks have grown to become an important part of daily life for
many people, and this growth has also brought new security concerns, and the reality of
government and commercial Internet surveillance [1, 2, 3, 4]. As such, there is increased
demand for anonymity protections for individuals whose communications are carried by digital
communications networks. This chapter introduces the current technologies underpinning
anonymous and secure communications. These topics are generally required for understanding
the state-of-the-art solutions available today, and will help to motivate this thesis.

2.1 Problem Description

In general, a node information discovery system’s purpose is to enable nodes within the
network to route to their desired destinations. Discovery systems which desire to provide
anonymity protections must also adhere to the following restrictions on initiator anonymity.
Meaning that under observation by a man in the middle any initiator or target are equally
plausible for a given communication. This is done through the use of other network nodes as
routers (also known as relays,) to prevent direct connections between an initiator and their
destination. Additionally, these route intermediaries should be chosen in an unbiased fashion.
The most popular anonymity network in the world, Tor [11], does this by creating trusted
central authorities who act as arbiters for information on all relays. This presents a few
problems which this thesis will try to address, namely enumeration of the entire network is
trivial if total network state is public, allowing for blocking of nodes by a motivated adversary,
also transmission of so much network state to many nodes is not scalable, and centralization
creates attractive points for hackers or adversaries and act as bottlenecks and make denial of
service trivial.

An intuitive answer to the issue of centralization is to use decentralization, however they are
susceptible to various attack patterns and vectors which centralized systems are not. This
section will briefly additionally introduce some of the more prevalent problems which can
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2 Background

affect decentralized networks. Later on, this thesis will analyze the introduced solution in
consideration of these problems, in order to judge its suitability. So, in simple terms, this
thesis answers the question; how do we protect initiator anonymity, in a decentralized and
scalable way?

2.2 Onion Routing

Onion routing is a method of providing anonymity to online communications first outlined in
1998 by Reed, Syverson and Goldschlag [15]. It applies multiple layers of encryption (hence
the name “onion”) to secure message contents. The use of multiple layers of encryption also
allows for hiding the initiator as well as the recipient against assumed dishonest participants
with specific capabilities. In a simplified setup, an initiator of a communication would first
choose a series of nodes, i.e., computers or servers providing routing services, to route through.
Starting from the last node in the series, the initiator would then recursively encrypt the data
with a different key for each intermediary node. These routers then relay traffic back and
forth between the initiator and destination. In practice, initial communications are encrypted
using asymmetric key pairs, and used to negotiate symmetric keys for the duration of the
session. These symmetric keys are used for the encryption of the user data, as symmetric
cryptography is more efficient for real time communications.

When communicating a message it is forwarded to the first node in the route, who decrypts
the first layer, and forwards it on to the next node, each one peeling away the subsequent
layer until the last one can finally read the message. The length of the route depends upon
the specific implementation, but generally is three. Since its inception, it has formed the
basis of many anonymity techniques and networks, such as Tor [11], Octopus DHT [16], and
others.

2.3 Private Information Retrieval and Oblivious Transfer

The use of centralized databases/data repositories presents a unique problem regarding user
privacy. An interested database owner can collate information about accesses and data
retrieval of a given user. One solution to this problem is for the user to request a copy of the
entire database at periodic intervals, and then only query from their local copy. However,
this introduces severe overhead, and removes some of the convenience of publicly accessible
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data, primarily that it allows near-instant access to the most updated, recent and verifiable
data.

Private Information Retrieval (PIR) [17] was devised as a method for the user to retrieve
either individual records or blocks from a database, securely and anonymously, directly from
the remote database itself. Thus maintaining the benefits of a publically accessible database,
and avoiding the drawbacks of having to maintain a local copy. PIR operates similarly in
concept to oblivious transfer [18], that is both consider the case of a data holder A who has
some discrete pieces of information, one of which a user U requires.

The key difference between oblivious transfer and PIR, is that an oblivious transfer is
bidirectional, in that A must remain oblivious to what U has actually requested, and U must
remain oblivious to the other data A can give. In PIR only the data holder must remain
oblivious to what U requests [17, 19]. Both methods have played roles in other solutions
in the field of anonymous network information discovery. Notably in PIR-Tor [20], and
ConsenSGX [21]. More information on these solutions is given in Chapter 3 which concerns
related works.

There are two versions of PIR, computational PIR [19], leveraging problems known as hard to
solve similar to the primitives involved in public-key cryptography, and information-theoretical
PIR [17] which is based on provably (via number theory) unsolvable problems. While better,
information-theoretically secure PIR is necessarily more complex both in mathematical and in
physical (i.e., equipment and implementation) terms than computational PIR. For example,
in practical terms, to implement information-theoretically secure PIR in a distributed way
one needs at least two, and preferably more servers [17].

2.4 Distributed Hash Tables

A hash table is a mapping between keys and data. Typically, arbitrary data is hashed to form
the key, to which some value is mapped (generally the data itself). A hash table provides a
mechanism to find a value mapped to this key within a data structure. A distributed hash
table implements this behavior over a network consisting of multiple hosts [22]. Since their
first appearance in the 1990s, distributed hash tables have been a fairly well researched topic
[23, 24, 25, 26]. When considered more simply DHTs chiefly provide a lookup service, and
as such DHTs are capable of forming many different services, and fulfilling many use cases,
like anonymous routing or a distributed datastore. Their distributed nature makes them
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particularly scalable and fault tolerant, when considering macro-scale availability. However,
as with most Peer-to-Peer (P2P) networks, they are susceptible to potential micro-scale
bottlenecks among entrants in the network.

These bottlenecks can be abused, for example, consider a simple case where a node always
sends the wrong value for a given key [24, 26]. The potential issues created by these bottlenecks
has motivated numerous security-minded overlays to augment DHTs, a subset of which are
discussed either in this chapter, or in Chapter 3. Described below are the two DHTs which
form the basis of the DHT-based approaches discussed in the related works chapter. Chord
is of particular importance as it also forms the underlying DHT used in this thesis.

2.4.1 Chord

Chord as outlined in 2001 by Stoica [24] is a DHT using a m bit length identifier assigned via
SHA-1 for consistent hashing. Chord nodes are arranged in a directed circular graph of at
most 2m nodes. The number of query hops is at most O(log2(n)), due to the use of consistent
hashing and m-entry finger tables [24]. Due to its efficiency, it forms the base DHT of many
later works ([16, 27, 28]).

Figure 2.1: Example Chord Circle and New Key Insertion

Chord strives, and is largely successful, in attaining efficient load balancing and scalability,
due to consistent hashing and uniform distribution. Consistent hashing is a specific subset
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of hashing technique related to hash tables [29]. It guarantees that only a smaller subset of
keys need to be remapped when a hash table is resized.

Geometrically Chord is shaped in a circle with directed edges between nodes. Each node in the
network is placed in order of their identifier within the circle. The identifier is formed using a
secure hash function (for example SHA-256 if implementing today), which provides a uniform
distribution and a collision rate near zero, as well as the m − bit identifer. The geometry
provides the consistent hashing guarantees. This helps ensure that when someone joins or
leaves the network, the resizing of the DHT, and the remapping of keys is done efficiently.
According to the authors, this takes O(m logn) time making Chord reliably efficient [24].
This makes Chord a popular choice as an underlying Distributed Hash Table (DHT) for
multiple networks and protocols [12, 16, 27, 28, 30].

On network join, each node in the network is placed in order of their identifier within the
circle. To store data, a key is placed in custody of the first node within the circle whose
identifier is equal to or greater than its identifier. That node is now known as the successor of
key k, or successor(k) [24], this is illustrated in Figure 2.1. Two important concepts to the
Chord DHT, when considering the future security-minded overlays, are the neighbor and the
fingers. Neighbors are those nodes directly successive to a node, whereas the ith finger of a
node n is defined as successor(n+ 2i−1). Nodes within Chord maintain a finger table, of size
m. Therefore, fingers are nodes which are not direct neighbors, but of which a node still has
direct knowledge. Through this special relationship, a node can route to its finger directly.
Again, the entries in the finger table are equivalent to the number of bits in the identifier
meaning a Chord DHT has the following properties if the identifier size m = 32, a network
size of 232 and a finger table length of 32 [24]. Furthermore, when referring to distance within
the Chord circle, it is directly related to the difference in values of the identifiers.

Also of interest is the node joining (churn) and balancing phases of the network. The process
for a node joining works as follows: a new node n2 asks an existing node n1 in the network
to find its successor, similar to finding successor(k) in Figure 2.1. n2 begins the successor
search function from its first finger. To reduce the total number of messages, it also checks
for entries in its finger table which would contain no node, and functionally skips them,
instead of a naive search through the whole table. The process is completely finished once
the stabilization round is run. Stabilization is the process of maintaining finger tables of all
nodes accounting for node joins and departures [24].
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2.4.2 Kademlia

Kademlia uses 160 − bit keys and an XOR operation, as opposed to a classic arithmetic
operation, to provide an approximation of distance for its DHT [26]. Using XOR allows
Kademlia to have efficient computations while maintaining all the necessary aspects of a
distance function, that is symmetricity, identity, and the triangle inequality. Unlike Chord,
where nodes can be thought of as being within a circle, for Kademlia they can be represented
by a binary tree. Each node has some knowledge of nodes “near” it, meaning within the
same subtree of the binary tree. Nodes searching for an identifier need only go to the closest
possible identifier they are aware of, which then asks the closest they are aware of, and in
this way the rest of the tree is crawled as necessary to find the requisite key. Kademlia is
notable because it is fairly straightforward to analyze, as the XOR-metric forms an abelian
group, and is therefore provably consistent and efficient. Like Chord, it also contacts at most
O(logn) nodes per query [26].

In order to route to a destination node D, an initiator node I sends a FIND_NODE request to
the nearest ID, which represents node N , it is aware of. N responds with k nodes, depending
on the replication factor, it knows closer in the tree. The replication factor is a configurable
parameter defining how many nodes are returned during the lookup. I chooses the closest
node and continues until it reaches its destination [26].

2.5 Gossip Protocols

Humans have long been efficient at information dissemination, and so a class of algorithms
which mimic the human method of oral information transmission were created and are
collectively known as gossip protocols. A naive gossip algorithm involves one node A telling
another node B new information. Whenever a node hears new information, it triggers it to
spread that information further. Once all nodes have been informed, transmitted, and no
longer receive new and updated information the algorithm ends. In this way, information can
be disseminated without the need of a centralized authority [31].

Tarzan [13] is the most notable implementation of a gossip protocols for a secure and
anonymous network, using a gossip protocol to ensure the transmission of network state from
limited initial knowledge. It is a P2P anonymity network with onion-style routing using
sequences of routers. All members of the network are potential routers, as well as potential
initiators of communication, making it a system of equal peers. As equal peers, nodes in

8



2.5 Gossip Protocols

the network must by design know all other nodes in the network when choosing the relays
through which to route traffic, and to spread this information gossip protocol is utilized.
Note that significant information can be gained about a user if it does not know the whole, or
nearly the whole network, or use all peers equally to route traffic [13]. More specifically, the
information leaks created could create a situation in which the initiator is probabilistically
determinable just by the overuse of certain routes.

Ambitiously, Tarzan incorporates the concept of plausible deniability within the network itself.
Natively providing a user the ability to cover their traffic, meaning using additional dummy
data in order to obfuscate characteristics about about the intentional data transmission.
Without the cover traffic, these characteristics might be identifiable to the user. Therefore,
Tarzan incorporates random cover data which the user does not consciously create, with
“real data” which is the user’s actual traffic. This data is then interspersed together, creating
deniability about which traffic is the meaningful traffic. This cover traffic is enabled by the
use of mimics. To enable this behavior, each node first chooses a random value k. The given
node then creates a bi-directional relationship mimic relationship with 2k other nodes.

Data is sent in a time-invariant manner between mimics in either direction over the wire.
Data rates as well as packet sizes are as uniform as possible in both directions, to prevent an
attacker from finding the originator of a message. As mimics are used to hide the actual use
of the network, they must necessarily be one of the starting nodes for the creation of routes,
otherwise differentiating between cover traffic and real traffic becomes trivial [13].

Tarzan is secure, however the requirement to know the whole network, the use of mimics and
cover traffic, as well as the need to transmit the network state to prevent the information
leaks outlined above introduces significant delays and overhead within the network. As the
network grows the amount of traffic dedicated solely to maintaining state or cover traffic
grows in tandem straining the network and limiting its total capacity [12]. This makes the
use of Tarzan impractical at scale.

GuardedGossip [14] attempts to use a gossip algorithm in a secure and anonymous way, while
mitigating the previously seen security tradeoffs or vulnerabilities demonstrated by other
networks, specifically bandwidth wasted on transmission of network state, centralization, and
robustness to malicious information. GuardedGossip incorporates two specific techniques
to achieve this robustness: bounds checking, originally defined in NISAN [27], and witness
list checking, which performs a similar function to redundancy introduced in other solutions
[12, 13, 16]. Both of these concepts will be defined in more detail below. Nodes learned
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2 Background

about, via gossiping, are divided into two groups, which essentially boil down to verified and
unverified. Verified nodes have passed both security checks, unverified have not.

The first of the checks is the aforementioned bounds checking. GuardedGossip is an overlay of
a Chord DHT, and therefore inherits the concept of fingers. In simple terms, bounds checking
is a measure of the plausibility of a finger table. To accomplish this, a node determines an
approximation of the number of nodes in the DHT, n. n is approximated by calculating
the distance between the given identifiers in its finger table and what the optimal identifiers
would be if the underlying DHT was full (i.e., 2m nodes, as defined in the Chord section).
This allows an approximate calculation of node density d = 2m/n. NISAN [27] additionally
calls for a tolerance factor, here t; t > 0. A received finger table is considered plausible if its
node density d′ < td. GuardedGossip defines its tolerance value to be t =

√
1/f ; f := 0.2.

The second check is the witness list check. The basic idea introduced here is to determine if
a node has ever come into contact with a more correct finger for a node than it is reporting.
To that end, if witness list checking is performed on a finger table from a node B, by a node
A, then A first calculates the ideal fingers of B, as if the DHT was fully populated. Next, it
checks its witness list, which is a collection of node identifiers it has witnessed either during
stabilization or gossiping, and determines if one of these nodes is a more correct finger for B
than what it is reporting its fingers to be. That is, does the witness list of A contain a node
with an identifier closer in distance to the ideal finger than what B says? If so, then with a
probability of p = 1/2 the finger table is discarded, or a liveness check is performed on the
more correct finger, to see if B was lying. By doing this probabilistically, doubt is cast on
the state of information held by A [14].

After these checks, verified nodes are called guarded nodes and can be used for routing as well
as be further propagation. Each node maintains a guarded list of nodes having passed this
verification. A further change from the naive gossiping algorithm is that gossip is actively
sought, instead of passively obtained. Additionally, the gossip relationship is created in such
a way that nodes only accept or transmit gossip to those within its finger table [14].

A complete overview is then: when a node wishes to receive gossiped information from
another node it requests that node’s whole finger table, on which it performs bounds checking.
Nodes within that finger table are candidates for further use, either for gossiping or circuit
creation. In either case, random nodes are chosen from these candidates, and the witness list
check is performed on this subset, as outlined above, and if appropriate nodes are placed
on the guarded list. Afterwards, circuit creation is done from a random node within the
guarded node list, and further hops through to the destination are accessed via tunneling.
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GuardedGossip was shown to be very successful with minimal overhead against both passive
and active attacks, and proves the viability of using gossip protocols to enhance the security
of DHT based anonymous communication methods [14]. The approach proposed in this thesis
is based on this algorithm, using both bounds checking and witness list checking, and adding
the concept of a trust chain or lineage.

2.6 Attacker Model

When defining whether a system is secure or not, it is important to understand the assumed
environment in which it will operate. Typically, one can assume any variety of attackers who
may interfere with a network, i.e., governments, hobbyist hackers, revenge seekers, etc. Each
may seek to encourage false operation of the network for any number of reasons. As such, it
is not considered possible to defend against all attackers with any potential capability at all
times. This section lists the specific attacker model assumed for this thesis.

First, it helps to define a few terms related to attackers and how they operate. Of critical
importance are passive capabilities and active capabilities. Passive capabilities mean an
attacker has the ability to monitor some portion of the network without manipulating traffic
specifically. For example, as the router for all traffic, assuming no other forms of encryption
are used, an Internet service provider can view the Internet traffic of a specific user without
significant effort. Active capabilities imply an attack who can manipulate traffic or perform
directed injections, modifications, or deletions of data in order to attempt to influence network
operation. Additionally, attackers can be internal, external, local or global which equate
to inside or outside the network, and with a small or large view of network participants,
respectively.

For this thesis, the attacker model is assumed to be similar to that of other related work
[12, 14, 16, 27, 32, 33] in the field i.e. f = 0.2, which is a fairly aggressive fraction. This
paper assumes an attacker with passive and active capabilities who is internal and local, and
can act arbitrarily in relation to the protocol. That is, the attacker can create messages at
whim, save data which otherwise would be ethereal, and generally act maliciously. However
we do not assume a global attacker with the ability to have total oversight of entrance and
exit within the network. It is not assumed the attacker has the ability to break the basic
assumptions on which the system is built.
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2.7 Common Attacks on Network Information Discovery Solutions

Next, a collection of the common attacks mentioned in this thesis against anonymity networks
will be introduced and defined. These attacks are generally all performed by internal local
adversaries, as described in Section 2.6. Understanding these attacks is required to understand
the motivation behind the defenses of GossipChain, as well as the background work on which
it is based, and the related work.

2.7.1 Range Estimation Attack

The range estimation attack [16, 34] is a method of breaking initiator anonymity via taking
advantage of the directed nature of an underlying DHT like Chord. It works by setting
“estimation bounds” as a circuit is created to at least have a probabilistic idea of a target
node. That is, in the beginning the upper and lower bound of estimation are the preceding
and successive nodes of the initiator. If a malicious node is queried later, it knows necessarily
the target exists beyond its position in the DHT, and if there are other malicious nodes
it controls which were not queried, it knows another bound. In the end, the attacker can
determine a small subset of nodes which can be the target, partially (and in some cases [16]
totally) breaking target anonymity [34].

2.7.2 Eclipse Attack

An eclipse attack [35, 36] involves forming a community of nodes which collude in order to
break potential protections introduced into the network. This community then, in its most
damaging incarnation, topologically surrounds honest nodes and feeds them false information
in order to control future routing or surveil traffic. For a more concrete example of this attack
in practice, see the section on ShadowWalker in Chapter 3, and the paper by Schuchard et al.
[36].

2.7.3 Bridging and Fingerprinting Attacks

In [37, 38] Danezis et al. outline the concept of the fingerprinting and bridging attacks
against anonymous networks. The basic idea is to leverage the limited knowledge of each
node against it in order to break the initiator anonymity assumptions or protections. If a
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node has only a limited view of the network from which it performs routing, its anonymity
can be broken. Consider the following case: a node A knows five total nodes, Ni for i ∈ [0, 4]
and assume a network topology where A is the only node who knows some subset of those
nodes in combination, N1, N2 and N3. If A routes through these three nodes, it becomes
trivial to determine A as the initiator for a node with passive observation skills over one of
the intermediate nodes [38]. Similarly, by using knowledge of network topology and the fact
that nodes have limited total view of the network at any one time, and make assumptions
from communication “relationships”. This means, if A communicates to C through B, and
an attacker has view of the link between C and B, and knows only A knows both B and C,
the attacker can assume the communication initiated from or at least contained A. [38].

2.7.4 Sybil Attack

The Sybil attack [39] outlined originally in 2002, occurs when an attacker can cheaply create
nodes (usually virtually) within the network to encourage a large malicious fraction. If this
happens, all other attacks listed in this section become easier. In general, all anonymity
networks are susceptible to the Sybil attack, without outside mechanisms to control entrance
into the network. As such, this thesis also does not attempt in and of itself to solve this
problem.

2.7.5 Denial of Service

Although denial of service, meaning partial or total disruption of communication within
the network, is an outcome rather than an attack, it is prevalent, and should be discussed.
Typically, denial of service attacks are used to make the network not viable for real-time
or low-latency communication. Therefore, care must be taken to ensure that a network’s
behavior does not allow, or minimizes the risk of this occurring.

13





3 Related Work

This section contains a review of the state of the art within the field. Approaches can be
divided largely into two lanes: centralized and P2P. As will be seen, centralized solutions are
based mostly around Tor [11]. The decentralized methods take many forms; some of which
may incorporate some aspect of centralization, although considered here for our purposes as
decentralized. Where there exists a central authority in a P2P network, it generally exists to
provide or revoke certificates, as in [16].

Client-Server systems have the benefit of their trusted authorities to maintain and coordinate
information which can or will be used for routing. However, these centralized mechanisms
are attractive targets for attack. Decentralized (P2P) systems operate in a wholly untrusted
environment, where any actor can be potentially malicious, even those generating or sharing
routing information. While from a security and anonymity standpoint, this is challenging,
P2P networks theoretically offer many benefits over their centralized counterparts in terms of
scalability. Solving this tension has encouraged a lot of research into making P2P networks
suitable for anonymity purposes, [12, 13, 16, 27, 40].

3.1 Client-Server-based Approaches

The most commonly used anonymous communication network with over two million users is
Tor [11]. This network uses a limited number of nodes acting as relays (or routers) to assist
users in forming circuits and enabling onion routing [11, 12]. A circuit is a series of nodes
through which traffic is onion routed [11].

The network is formed by nodes fulfilling different specific roles to enable anonymous
communication. In general, circuits are formed of three nodes, not counting the traffic
initiator or destination. The first role is that of the entry guard node, which are computers
which another uses to enter the Tor network. They are used statically for a period of around
2-3 months. The next node through which traffic is routed is the middle relay and lastly
there is the exit node which forwards the traffic to its final destination. Collectively these
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three are all known as relay nodes or routers. Finally, of critical importance are the directory
authorities running the directory protocol, and who feed a network consensus to directory
caches. The purpose and content of the consensus is described below.

The directory authorities run the directory protocol, and are small in number and unique
among the Tor network. Considering a threat model of Tor, they occupy a space in which
they are considered “semi-trusted”. Other nodes in the network are considered untrusted.
Directory authorities are also run and spread among multiple organizations to aid in network
robustness, and to divide trust. They are trusted in that they have the ability to sign
information on network state, which is the list of relay descriptors, which are the IP address,
public key fingerprint, and other pertinent information about the relay; they also are arbiters
of network state to directory caches.

In the initial specification of the Tor network, each directory authority reported on network
state as they saw it. This was improved to a consensus model in version two, where a node in
the network would request state from any/all directory nodes, and form their own consensus.
While an improvement over the first version, it caused nodes to have variable views of the
network status at any time. As of version three of the specification1, shown in Figure 3.1,
network state information is aggregated among all directory authorities and a consensus on
network state is formed and agreed upon via majority vote periodically. These directory
authorities are long-term in the network, and a list of them is shipped with the Tor source
code [11].

Each node entering the network requires full knowledge of all currently available relays, which
is requested from a directory cache. The directory cache then provides the consensus it
received from the directory authorities which was signed with a tightly kept long term key.
All subsequent requests for updates result in that entering node only receiving updates to
outdated information, or new information it does not already have. This is an improvement
from previous versions of the directory specification in which the whole consensus was
forwarded [11].

However, even with these performance improvements, as the network grows, an increasing
amount of traffic is dedicated to the transmission of this information. As this clogs network
capacity, it presents a scalability problem [12]. The new directory specification was only a
temporary fix. Additionally, this bottleneck can create a security problem, if a dedicated
adversary is capable of gaining control over these dedicated relays. Furthermore, the necessary

1https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
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Figure 3.1: Tor dirspec-v3 overview

knowledge of all network state makes Tor not a viable option for censorship prevention, as
when a motivated actor (say a network operator) joins the network, they can easily obtain a
full network consensus, and use that information to block all routing nodes, should they have
the capability.

Various attempts have been made to improve the shortcomings of Tor have been made,
but greater attention will be given here to two state of the art methods, PIR-Tor [20], and
ConsenSGX [21]. Both relying on different oblivious transfer techniques in order to improve
or maintain the privacy of the system while allowing for lesser data transfer dedicated to
network state material.

PIR is a method to retrieve a block of data, from most likely a database, without the owning
server having knowledge of which data was requested. PIR-Tor by Mittal et al. [20] is a
modification of Tor, where instead of sending whole encrypted databases to peers, it uses
various forms of PIR in different portions of the Tor architecture. Namely, information
theoretic PIR for guard relays; by which is meant guaranteed Privacy without regard for
the computational power of the servers or machines involved the query, and computational
PIR for directory caches which means using techniques thought to be reasonably secure, and
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exceedingly hard to break in reasonable time.

Additionally, the ability to request specific records from the database measurably reduces the
load of network state information transfer. The use of PIR also ensures minimal loss in user
anonymity.

As in normal Tor, any relay can be a directory cache and still holds potentially global network
view, and clients connect to these servers to form circuits. For the guard relays, meaning
those first servers in the circuit chain, information theoretical security helps prevent potential
collusion, and minimizes information leaks. And in the information theoretical PIR mode, all
three guard nodes must be directory caches. It should be noted here that there is significant
trust, perhaps undeserved, placed upon the guard nodes within the Tor network. The use
of information theoretical PIR can actually help mitigate potential issues that come along
with this trust. Unlike Torsk[41] which adds some aspect of P2P networking to minimize
network load, and necessary information required for network function, PIR-Tor’s model is
still centralized, as in normal Tor. In short, PIR allows clients to request from the more
centralized servers only the information they need, lessening the amount of traffic used in the
network to maintain state, while keeping or improving current security standards [20].

As it inherits current security standards of Tor, there are still potential problems left
unaddressed. First, any directory cache, and even any motivated user, is able to obtain a
global network view. For a state actor interested in censorship, it would be trivial to perform
a denial of service against specific users in this setup, assuming they control a directory cache.
Also, the performance expectation of the recommended computational PIR system is not high,
and the information theoretical PIR requires a larger trust surface, which can be impractical
[20, 21]. Additionally, there are issues with, for example, the use of Snader-Borisov [42]
critera for node selection weighted by bandwidth and/or throughput capability, is not enough
to prevent a motivated (or wealthy) malicious actor to unduly influence the Tor network (i.e.
by purchasing many servers with high bandwidth, thus encouraging that their servers are
selected).

As opposed to the oblivious transfer technique used by PIR-Tor, which in practice can prove
impractical, ConsenSGX uses Oblivious Random Access Memory (ORAM) as well as the
Security Guard Extensions (SGX) [43] technology from Intel (or other similar extensions by
other vendors, collectively known as Trusted Execution Environments (TEEs)) to improve
the transmission of Tor network state [21]. ORAM, a technology which allows access to data
from a server or similar construct in an oblivious manner, is an attractive methodology for
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this purpose, for the same reasons that PIR is, providing similar capabilities and guarantees
as ORAM [20, 21].

Sasy and Goldberg [21] define a newer query paradigm for nodes to obtain some or all of
the network consensus. The network consensus held by the directory servers is changed into
two functions which enable the ORAM process, and the ORAM access sections are held in a
tree-like data structure. To obtain new descriptors a user will use a parameters list to choose
a node in a bandwidth aware way. By bandwidth aware, we have only a sorted list by order
of bandwidth from best to worst [21]. The authors state the bandwidth ratings are either
self reported as in current Tor [11] or via Snader-Borisov, like in PIR-Tor [20, 21, 42].

All secure operations are done within one of the requisite TEEs of the directory caches. Once
user receives the public key of the SGX of the directory cache, they send an encrypted request
for specific records it determined via the parameters they downloaded earlier [21]. Since this
is via an oblivous manner, the cache does not know the exact record requested. When guard
nodes are updated, a full network consensus is used, since current guidance from Tor does
not recommend updating the guard nodes for a few months [11].

Again with ConsenSGX there are still times in which the full network consensus is downloaded,
and therefore the full network state. Additionally, there is no prevention of enumeration
of the whole network state. Then, as admitted Sasy and Goldberg recognize the security
trade-off that exists by relying on the TEEs [21]. Recently, there have been successful attacks
on the Intel SGX outlined in [44, 45, 46], which negates the trust assumption based on the
TEEs while any of these vulnerabilities are viable.

In 2020 Komlo et al. [47] describes Walking Onions as a method to improve the scalability of
the Tor network. Walking Onions differentiates relays and clients (those using the network,
but not acting in any routing capacity) of the network in a more specific way than original
Tor. No longer do all nodes need a complete consensus, but only those acting as relays, which
allows for a constant-size client overhead. In the paper they define two different algorithms,
Telescoping Walking Onions and Single-Pass Walking Onions, which is the more innovative
of the two. Both require some i which cannot be influenced by a third party, in telescoping
walking onions i is chosen directly by the client at each step. For the Single-pass version,
i values are derived from a client controlled random choice, and the choices are verifiably
random. Each relay descriptor is modified to include a range of numbers, corresponding to its
weighted chance to be a relay. The weighted chance is the range of possible i values to which
it answers. One additional modification is the inclusion of an authentication tag created by
the directory authorities [47].
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To extend a circuit using the telescoping method, a client must provide either i or information
to derive i along with the public half of an ephemeral key pair gx. The client is then returned
the appropriate relay corresponding to that i. the client can then check that the relay
indeed is responsible for that i− range and continue the process. The single-pass method
involves an additional key pair, but saves in overall message complexity due to requiring
only the single-pass [47]. The intuition for the single-pass procedure is that the use of a
verifiable-random function (VRF) will allow a client to know that some value i was chosen
uniformly from a distribution without choosing it itself. Instead, it produces a set of key
pairs, one for the VRF inputs, and one for the normal path construction procedures, and
instead of verifying the relay record itself as above, it verifies the VRF proof [47]. Even
though this solution introduces a far more scalable solution than prototypical Tor, these
algorithms still rely on a centralized infrastructure, namely the directory authorities, and
therefore still suffer from the one of the ills of centralized solutions–that is the centralized
component is an attractive target for attack and has supreme information and power over
the network in the event of its compromise.

3.2 Structured Peer-to-peer-based Approaches

Decentralized systems operate in an untrusted environment, with many malicious actors acting
at any one time. While considered to be more scalable than their centralized counterparts
(naively it can be considered that network capacity increases directly with network size,)
special care must be paid to ensure robustness in the face of the added adversity. Moreover,
without centralized coordinating servers, there must be a way to transmit network state to
new nodes. Not considering protection of the initiator or destination for a moment, there
have been multiple influential works on secure networks, notably [24, 25, 26].

But even those networks which consider anonymity must protect against many attacks.
These include fingerprinting attacks which are a class of attacks which allow an adversary
to probabilistically or deterministically determine the initiator and/or destination of a
communication [37] as well as the bridging attack in which an adversary uses the lack of
knowledge of other nodes to determine information about their identities i.e. if a node only
knows one other node, etc [38]. Further more specialized attacks also exist, such as the eclipse
attack [36] which quickly stated involves compromising some consensus mechanism through
controlling enough nodes to collude against it, selective or total denial of service [48], a Sybil
attack where an adversary takes advantage of the ability to cheaply creates nodes to flood a
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network with malicious entities [39], or even a range estimation attack [16] which is explained
later below. This is in addition to potential problems also faced by the centralized networks,
such as censure by public authorities, and potential bottlenecks from overused nodes.

In their paper, Castro et al. define requirements and common attacks on peer-to-peer
networks. In it they define primitives and risks for secure routing, secure node ID assignment,
table maintenance, secure message forwarding, and self-certifying data. They also outline a
series of attacks which should be considered, and by which all networks should be judged.
Critically, it lays out that it is not enough to assume nodes follow the protocol correctly,
and some level of malfeasance should be assumed. It leaves the following topics unaddressed:
recursive queries, as they are very hard if not impossible to do anonymously, and information
leakage which is an exceedingly broad topic [49].

Mittal and Borisov [50] set about implementing these defenses, and demonstrated the
insufficiency of the secure message forwarding primitive outlined by Castro et al. The
limitations of Distributed Hash Tables (DHTs) with these defenses are related to information
leaks introduced during routing. Similar information leaks were taken advantage of by Wang
et al. [16] against NISAN [27], with the range estimation attack.

Salsa is a DHT-based project to create a scalable anonymous network by design. As is typical
for anonymity solutions, Salsa introduces misdirection via routing requests via intermediary
nodes. Novel for Salsa is the ability to have knowledge of only a few nodes, while creating
routes from the total view of all nodes [40]. the ID space, which is based off of user IP
addresses, of Salsa is divided into a binary tree. Each node has total knowledge of its local
area in the tree, and limited knowledge of other areas in the tree [40]. To secure the lookup,
similar to the process in NISAN [27], Salsa uses a bounds check to help prevent lookup bias.
Lookups are redundant, and recursive, and done through random nodes within their local
area of the tree. Because of the knowledge of a few nodes in the global neighborhood, nodes
are able to communicate throughout the network, with only limited knowledge themselves.
The circuit is then formed via the redundant lookups at multiple levels, until finally one route
is selected. Unlike Octopus [16], there is no method to remove or inform others of offending
nodes.

However, Mittal pointed out Salsa’s susceptibility to various attack vectors [51]. First and
damningly information leaks introduced by the redundant lookups allow an attacker to
discover the initiator of a lookup, if a local node is compromised. Furthermore, Borisov [48]
noted the ability to cause significant issues if, even at a malicious rate of f = 0.2, malicious
actors are capable of performing selective denial of service on within the network, to ensure
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that as many routes as possible are through malicious nodes. Additionally Borisov outlines a
possible public key modification attack when an entire stage of the requested nodes in the
tree are malicious. Naturally, these can work synergistically by denying any route selectively
they cannot perform the modification attack, whenever possible.

NISAN [27] is a network information distribution system meant to mitigate issues with
redundant routing networks, due to a lack of scalability resulting a reduced number of
paths. The goal is to provide a robust searching algorithm which preserves anonymity while
providing better reliability, via gauging the plausibility of finger tables, and additionally
using techniques to protect the identity of the destination. NISAN is based on a Chord-like
DHT.

The main idea behind the functionality to hide the destination is to request entire tables from
intermediate nodes. This hides the target node. This is done to prevent fingerprinting and
bridging attacks. Enabling this involves two main approaches considered novel to NISAN;
aggregated greedy search including an iterative Chord lookup which involves correlation of
information from multiple sources and whole finger table requests to prevent misinformation,
and bounds checking, which compares returned information about a following node or destin-
ation to some defined distance bound to determine if the information is plausible [27]. The
aggregated greedy search occurs as follows: given a requester v, a lookup target x, and a
network-wide Neighbor limit α, v requests the entire finger tables of its fingers, and from
the returned fingers attempts to find x from the α closest nodes it knows, according the the
underlying DHT’s distance metric. the lookup loops until for one round the α-list of closest
neighbors doesn’t change, the search ends [27]. To accomplish bounds checking, NISAN
compares the ideal finger identifiers for a node versus the reported fingers in a finger table.
If all the identifiers are near to the ideal identifiers (within a threshold) the finger table is
considered plausible. This helps defend against overly biased information dissemination by
malicious actors [27]. This technique is described in more detail in the section describing
GuardedGossip 2.5.

While NISAN makes significant strides in improving the security posture of a network, while
maintaining anonymity of the destination and robustness to malicious nodes (particularly
with bounds checking,) it is not wholly successful, falling to a documented range estimation
attack [16]. A range estimation attack, which is possible mostly due to the directed nature of
Chord, occurs when an attacker understands that in a directed-connection environment, like
Chord, there are limits in which all nodes operate. A querying node Q will never query a
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node after its destination. As Q proceeds with its query, if it crosses some malicious node M ,
M knows necessarily that Q exists somewhere before it on the chord circle.

Myrmic [32] is a DHT operating and behaving much like Chord (and is in fact built atop
Chord), with a distinct difference and addition in order to handle potential malicious or
adversarial behavior. Namely, it adds a root verification protocol. The root verification
protocol is enabled via the use of nCerts, which contain current information about a node and
its surrounding neighbors. If the network is unchanged, this indicates freshness. This means
there is a certificate authority, who is responsible for issuing and revoking certificates as well
as updating nodes when a certificate is revoked. All certificates are signed by this certificate
authority, and the certificates contain information of the node’s surrounding neighborhood,
who act as witnesses. That is, each witness should also contain information about that node,
and therefore can be used as verification. Using the root verification protocol, a requester is
therefore able to verify that a responder is the true root of the requested key, as they have a
fresh certificate which can be verified[32]. However, Wang et al. recognized that on node
churn all certificates must be reissued leading to a lot of state information transmission in
high-churn networks. Myrmic is one of the two basis networks which are the crux behind
Torsk [41].

Torsk [41] introduces a Tor-compatible replacement for the directory service. This solution
uses a Kademelia (Kad) DHT [26] with Myrmic [32] characteristics. A Myrmic certificate
authority issues nCerts as in Myrmic, i.e. containing information about the node itself, and its
neighbors (the nList). Additionally, each node maintains another certificate authority-signed
list of random nodes (the rList), who are chosen by the certificate authority. Torsk also
uses a concept of buddies. Buddies are chosen via a random walk, where a node Q chooses
uniformly random from its known nodes some node P , and requests its known nodes. If all
certificates and routes are verifiable by the certificate authority, Q performs an onion route
through P to the next uniformly chosen node, and continues until it reaches a predetermined
path length. The last node is added as a buddy. When routing, Q again randomly chooses a
node from its known nodes, P ′, and P ′ asks one of its buddies for the desired identifier. This
hides the relationship between Q and P ′. The lookup for the identifier is done within the
DHT for its root node, which is the next hop in the circuit [41].

However, the buddy selection process allows for a denial of service attack [34]. This is critical,
because an attacker can influence route selection via selectively denying service to routes
it cannot control. There are two phases, first is to overload the neighbors of the Kademlia
lookup target. This will deny the route. Next, is to take advantage of the buddy selection
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process. If an attacker can simply cause one step of the random walk to fail, the entire walk
is started over. Therefore, any time a walk crosses a malicious node it can provide an invalid
certificate, causing the random walk to start anew. This significantly hampers the circuit
building process, and limits the total amount of available circuits to those with malicious
nodes [34].

Whereas other systems do not necessarily define the process by which a node is credentialed,
there are a subset of structured topologies which rely on Distributed Key Generation (DKG)
alongside the concept of threshold cryptography. Given a set of n nodes and a threshold
parameter t, DKG(n, t) enables the requisite nodes to create a secret collectively, without
any individual node knowing the whole secret, and without a central authority. Now, in order
to sign or decrypt a message at least t nodes must collude using their shares of the key to
sign or decipher the contents [52]. These principles are critical for defining what are known
as quorum-based approaches, which address potential security vulnerabilities via collective
action.

Young et al. define two main and novel algorithms for robust communication with the
presence of potentially malicious actors on top of a DHT with a quorum-based topology, with
a malicious fraction f ' 0.33 [28]. Notably introduced into the DHT is the use of threshold
signatures, and distributed key generation to assist in performing secure cryptographic
operations in the absence of a trusted central authority to handle certification and Public
Key Infrastructure (PKI). This is enabled, semi-inherently, through the use of the quorum
topology which allows nodes to act as a group, where in non-quorum based overlays each node
must act independently. In a quorum topology, nodes are layed out into groups, Qi; i ∈ [1...n],
and nodes within one group are able to communicate freely as “neighbors”. Two quorums
can communicate, wholly and freely if they share an edge similar to two singular nodes in a
non-quorum based solution [28].

Specifically the problems solved regarding a DHT as outlined by Young et al. are: (1) key
generation and maintenance, and (2) robustness to spamming attacks. Which are solved
via the introduction of the aforementioned distribute key generation, and a prove-and-verify
system and protocol. This last piece is enabled by two new protocols RCP −I and RCP −II,
which provide robust communication with low overhead [28].

However, unlike some other protocols mentioned here, i.e. Octopus DHT, ShadowWalker,
etc., it does not address initiator anonymity and/or query privacy [16, 28]. Also of concern
is that even if a method of preserving anonymity is naively added, there it is potentially
susceptible to a range estimation attack.
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Figure 3.2: Simplified overview of a Quorum-based DHT

Backes et al. define a method for using an oblivious transfer protocol to add query privacy
to DHTs, more specifically the quorum-based DHT as defined by Young et al., mentioned
above. The basic idea of an oblivious transfer is that a requester can request a specific piece
of information, without the information arbiter knowing which information was requested,
and without the requester reading more information than is required. This allows for greater
privacy than requesting an entire neighbor table from another node [53].

Created here is a novel index-based oblivious transfer protocol, added to RCP − I and
RCP − II [53]. The main goal is to limit data revelation at any one time, so as to prevent
a malicious actor from spamming and receiving too much information about the network
as a whole, while maintaining query privacy to another node or server. Here Backes et al.
use a public oblivious transfer algorithm [54], to enable adding oblivious transfer to various
aspects of the query process in DHTs [53].

The protocols given by Backes et al. provide then robustness to a Byzantine adversary,
spam prevention, and preserve anonymity or initiator and destination. As stated above, this
solution would still be susceptible to the range estimation attack.

3.3 Random Walk-based Approaches

A fully P2P interpretation of Chaum’s 1981 mix systems [10, 55], was introduced by Rennhard
and Plattner [33]. MorphMix realizes a system in which all nodes act as available routers.
Allowing all users to operate as routers solves the potential bottleneck of having a limited set
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of routers in the original mix system, or even in Tor [11]. MorphMix relies on random walks
and witness nodes to secure the connection process. When setting up a circuit, each node
only selects the next step of the tunnel, due to this global network knowledge is not required.
The witness nodes assist in a collusion detection mechanism, which was later determined to
not function well enough to preserve anonymity by Tabriz and Borisov [56].

ShadowWalker [12] provides a low-latency anonymous communication network. In short,
ShadowWalker provides so-called shadows which form mirrors of a given node. A node
and its shadows form a neighborhood. ShadowWalker incorporates three distinct steps (1)
adding redundancy into the network topology, (2) circuit building, and (3) a secure lookup
protocol. (1) is done via the concept of shadows; who additionally sign routing tables to
provide verification, and prevent routing table manipulation. (2) and (3) add the shadows
into circuit building and lookups, to provide continuous verification, as well as detection of
manipulation, with the goal of preventing circuits with malicious nodes. When a lookup is
performed in circuit generation, the shadows serve to verify the node’s response. So long as
at least one node within this neighborhood isn’t compromised, the network should be robust
to malicious actors attempting to influence the system. ShadowWalker is built on top of
Chord [24]. Specifically, it adds greater redundancy to Chord via the shadow relationship.

(A)

(B)

Figure 3.3: (A) Simplified view of a Chord circle with Shadow relationships, (B) Detailed
view of two connected neighbors in ShadowWalker

Shadows are determined the by the successor relationship defined in Chord. Nodes have
successors and predecessors, and contain some knowledge of each. The graph is directed, and
cyclic. However, Significant limitations and attacks exist in and for ShadowWalker.

To more formally state the relationship of shadows and nodes; for a predefined redundancy
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parameter r, the shadows form a set of roughly r/2 predecessors and successors, shown in
Figure 3.3 (A), for r = 2. Given a node A, neighbor B, and r = 2, ShadowWalker defines the
following properties to build redundancy into the network topology, shown in a detailed view
in Figure 3.3 (B):

• A has connected shadows A0 and A1, and B has B0 and B1

• A holds information about (i.e. is connected to) shadows B0 and B1

• For i ∈ 0, 1, Ai is also connected to B, B0, and B1.

Additionally involved with redundancy is how the protocol can handle network churn. These
lookups are used to update its information for which nodes it is a shadow, and then recursively
performs the secure lookup on those nodes’ neighbors. By doing so, in the event of a node
failure among its neighbors, it can later connect to another node in the network. This allows
ShadowWalker to efficiently add or remove nodes from the network, while maintaining the
redundant topology.

ShadowWalker has significant issues, brought to light by Schucard et al. [36], who showed
that it is susceptible to an eclipse attack, and a denial of service attack through the shadow
relationship, and how it handles malicious shadows. Additionally, ShadowWalker makes no
effort to prevent full network knowledge, as with all the protocols listed here.

Considered state of the art for anonymized communication is the Octopus DHT [16]. Octopus
addresses shortcomings in its predecessors, most notably NISAN, Torsk, and ShadowWalker.
The novel features added to Octopus DHT can be summarized as follows:

Anonymous paths and relays: bounds checking and active malicious node identification

Secret neighbor surveillance: actively check validity of predecessors’ neighbor tables

Secret finger surveillance: use anonymous lookups to check validity of finger tables

Certificate authority: collects and collates reports, issues certificates, and removes malicious
nodes

Octopus is based on Chord, with the additional qualification that nodes hold information on
predecessors and successors. The first phase of the routing process is seen in Figure 3.4 (B),
the anonymous paths are set up via random walk process, with two distinct phases. The first
uses onion routing in an extending circuit, and the second a deterministic seed-influenced
random function [16]. Next, of particular note here are the secret neighbor surveillance and
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(A) (B) (C)

Figure 3.4: (A) A brief overview of an Octopus DHT overlay, (B) Routing via multiple
pathways, and (C) Secret Neighbor Surveillance

secret finger surveillance. Secret neighbor surveillance is illustrated in Figure 3.4 (A). Shortly
summarized, a node A makes an anonymous query to a predecessor node B and requests
its successor table. A then checks to ensure it is listed in the table correctly. This works,
because a node’s predecessor and successor lists are the same length, therefore if B is in
A’s predecessor list, A must be in B’s successor list. If A detects manipulation, it reports
B to the Certificate Authority (CA). In order to perform secret finger surveillance, a node
A selects a random finger F of another node B (which it knows because it received the
finger table at an earlier time). A requests F ’s predecessor list, and requests one of these
predecessors. It then checks if this predecessor has a truer or more ideal finger than F . If it
does, B is reported to the CA [16]. When A makes a report, the CA asks for proof from A

(i.e. the signed routing tables), and if it is sufficient, kicks B from the network, this process
is shown in Figure 3.4 (C).

These novel features of Octopus are suitable for preventing various attacks against DHTs.
Octopus sufficiently addresses preventing manipulation and flooding of finger tables, and
removing malicious nodes. However, its techniques are not free, and it adds measurable
overhead [16]. This leads to the open question of how one can obtain the active and passive
defenses of Octopus, in a more scalable manner.
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For a basic understanding of the network setup, GossipChain builds upon a Chord DHT
while borrowing ideas from previous works, namely GuardedGossip. It uses a gossip protocol
to spread chains of information of witnessed nodes. These chains are created and sent only if
a set of checks are passed, which introduces trust. The main goal of this thesis is to solve the
issue of network scalability in an extensible and secure way, i.e. mitigate the risks involved
via active and passive attacks commonly used against network information discovery systems,
while also accounting for the concepts of limited network overhead and load-balancing. The
underlying DHT is Chord.

GossipChain introduces a chain C which is a collection of records ri with i ∈ {0, 1, ..., n}
where n is the chain length. Each record ri contains the information indicated in Figure 4.1.
Using the hash of the previous record, it forms a linked list-style chain.

Record ri

hash(ri−1) node identifiers bandwidth node address
Total: 112 bits

Figure 4.1: Singular record within a chain

The chains spread are dubbed GossipChains, and are a form of trust chaining. Each record
is formed by the node requesting gossip information. The active and passive defenses used
are bounds checking and witness list checking, borrowed heavily from the GuardedGossip
paper by Panchenko et al. [14]. The checks are performed on each node as it sends gossip
information. Novelly introduced here is the concept of lineages, and relatedly, spot checking.
Lineages are a history which can be tracked to ensure all nodes in a chain responded honestly
according to the protocol. To this end, in addition to the trust chains, there is a doubly used
bandwidth metric both to limit the life of chains, and therefore network overhead, but also
to allow a high-bandwidth node also to create a longer living chain.

The system relies on some critical assumptions, without which the system does not function.
It is assumed there is a method to exchange public keys, which are required for the use

29



4 Approach

of digital signatures. GossipChain does not require a full CA, or any centralized online
component. For the writing of this thesis all keys were exchanged out-of-band. It also requires
a so-called bandwidth oracle, to grant the bandwidth scores. Next, this work does not address
the Sybil attack (only cursorily), and so it is assumed there is a way to limit node join in the
network (for the purposes of this thesis, this was IP address and a publicly available random
component.) There are additional assumptions related to the malicious environment in which
the network will operate, which are detailed in the following section.

4.1 Attacker Model

As stated in Chapter 2, this thesis assumes an attacker fraction f = 0.2, similar to related
works in the field. Further assumed is an attacker with passive and active capabilities, who
can act arbitrarily in relation to the protocol. That is, the attacker can create messages at
whim, save data which otherwise would be ethereal, and passively monitor all traffic coming
across nodes it controls. However we do not assume an attacker with the ability to have total
oversight of entrance and exit within the network. It is not assumed the attacker has the
ability to break the assumptions on which the system is built, and mentioned above. Also,
the attacker is not performing a Sybil attack.

4.2 Open Problems

Chapter 3 introduced a series of related works each of which addresses secure and anonymous
communication. However, each solution was found to be lacking in some critical way. Most
notable was the necessity in the state of the art (i.e. Octopus) for a centralized authority, or
with Tor’s lack of scalability. Therefore this section will introduce the various mechanisms
GossipChain used in attempting to solve these problems, through the use of trust chains
to distribute network state, and providing the necessary checks to secure communications
without the need for a centralized authority to actively kick nodes from the network, or
authorize their ability to transmit information. This will be done through the bounds check,
witness list check, lineage check, and spot check.
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4.3 Fundamentals

GossipChain was not made in a vacuum, it is built upon previous and historical solutions,
which have paved the way by creating various techniques that are proven to efficiently
solve various problems. GossipChain uses an established DHT in order to provide lookups,
techniques proven in NISAN to secure them, and hardware-based node identifier assignment
to prevent malicious actors from influencing their network position.

4.3.1 Node Identifier Assignment

It is critical that a node not be able to define its place in the network by controlling its
identifier. The ability to determine its place in the network would allow it to collect passive
information from arbitrary places within the network, and encourage information leakage. As
a solution to this problem, in GossipChain node identifiers are assigned via a deterministic
random, seeded by the combination of both a hardware identifier (e.g., IP address), and some
publicly available source, which for the simulation is a hash of a blockchain taken at the time
of network creation.

When practically used (i.e. not in simulation), other potential sources besides hardware IDs
are possible, so long as they are verifiable. The assumption here is that IP addresses are not
inherently cheap, and therefore an attacker is not capable of just trying again to get a suitable
place within the network. This is important, because without this assumption GossipChain
becomes susceptible to attacks considered outside the scope of this thesis. Most notably,
from an attacker with a significant number of malicious nodes who all have some form of
finger relationship, thus having the ability to create valid chains. Therefore, an attacker who
has the ability to cheaply obtain many IP addresses is outside the scope of this thesis.

4.3.2 Underlying DHT

As this thesis is heavily influenced by GuardedGossip, it was chosen to follow in its footsteps
and to use a DHT to providing the necessary structure over which to build an overlay and
perform lookups. In Chapter 2, Chord was introduced and explained as a background of the
thesis, and is also the underlying DHT. Like GuardedGossip, the network is expected to use
32− bit identifiers, with a maximum network size of 232 possible participants. This is not a
theoretical limitation, but was the chosen value for simulation.
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4.3.3 NISAN and GuardedGossip

Lastly, GossipChain incorporates the checks on finger tables originally introduced in both
NISAN [27] and GuardedGossip [14]. This means we judge the plausibility of the finger
tables of nodes via bounds checking and witness list checking. These techniques are further
explained in Chapters 2 and 3. This allows GossipChain to inherit the forebearers’ active
defenses, which introducing modifications to improve upon its drawbacks (i.e. NISAN’s range
estimation attack). Additionally taken from GuardedGossip (in an unmodified way) is how it
uses NISAN’s lookup procedure during finger table initialization.

4.3.4 Bounds Checking

In order to measure the plausibility of a finger table, a process known as bounds checking
is used. Here, a node determines n̂, an estimated number of nodes in the DHT. n̂ is
approximated by calculating the distance between the given identifiers in its finger table
and what the optimal identifiers would be if the underlying DHT was full (i.e. 2m nodes,
in Chord, with m− bit identifiers). This allows an approximate calculation of node density
d = 2m/n̂. NISAN [27], the introducting paper of this technique, further defines a tolerance
factor, here t; t > 0. A received finger table is considered plausible if its node density d′ < td.
GuardedGossip defines its tolerance value to be t =

√
1/f ; f := 0.2, which is the same t used

in GossipChain. Information sent that fails the bounds check is discarded.

4.3.5 Witness List Checking

A witnessed node is any node ID come across during normal operation of the network. Each
node maintains a list of nodes it has witnessed. This allows it to perform a sanity check to see
if a node has ever come into contact with a more correct finger (i.e. closer to the ideal finger
ID) for a node than what it receives from the finger table. To that end, if witness list checking
is performed on a finger table from a node B, by a node A, then A first calculates the ideal
fingers of B, as if the DHT was fully populated. Next, it checks its witness list, which is a
collection of node identifiers it has witnessed either during stabilization or gossiping, and
determines if one of these nodes is a more correct finger for B than what it is reporting its
fingers to be. That is, does the witness list of A contain a node with an identifier closer in
distance to the ideal finger than what B says? If A does indeed have a better finger, then
the data from B is discarded, and considered untrustworthy. With a random 1/3 chance, A
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will also perform a liveness check on the more ideal finger. If the witness is not live, it will be
removed from the witness list, although this means the information from B might be correct,
it is still not used.

4.3.6 Lineage Check

Each chain has a so-called lineage, which is every node counted in its records. This means the
path of each chain can be checked, along with the claimed relationship within the record. Each
gossip round, a chain’s lineage will therefore be checked for plausibility. This is, essentially, a
modified and combined bounds and witness check. First, it will check that each reported
finger in the record is plausible, according to the same threshold value in the bounds check, it
can then be determined if we have seen a more realistic finger according to nodes we have
witnessed. A chain which fails the lineage check is discarded. This can prevent chains of
maliciously created records from propogating within the network.

4.3.7 Spot Check

Normally when a chain will be transmitted, the bounds check and witness list check will
only occur against the node from which information is being requested. The spot check will
choose a set of random nodes from the chain at varying times when running the protocol to
re-run those checks. This is to prevent a malicious node from acting honest at some point,
and dishonest later. It can be used to be sure various nodes are still reporting the same or
similar information to when the chain was created. In order to do this, the finger table will
be requested again via tunneling, and bounds checking and witness list checking performed
locally, and is another point at which a chain could be discarded.

4.3.8 Digital Signatures

In order to provide veracity to the claims represented by a record within a chain, GossipChain
assumes the use of a digital signature algorithm. This implies there is a public/private
key pair for each node, and therefore a method for exchange of the public keys. Both key
derivation and exchange are considered outside the scope of this thesis, and for the point of
the simulation where it was tested with signatures, keys were exchanged out-of-band. At
no point does GossipChain require an online CA, or any other form of centralized authority.
In any case, the digital signatures allow for accountability of sent information, and notably
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prevent a malicious node from creating fake records to paint otherwise honest nodes as
malicious. For this reason it is considered fundamental to the network that digital signing is
possible.

4.4 Introducing GossipChain

When developing the solution, trust chaining was decided as a way to lessen the network
overhead of previous solutions and incorporate potential load balancing. Answers solving
giving measurable anonymity, have been widely researched in the past concerning DHTs,
however these previous solutions have drawbacks, which have been outlined in Chapter 3.

Ensuring network scalability, and providing better low-latency service, is a topic fairly ripe
for exploration. For this novelly introduced is a bandwidth metric, allowing traffic to be
efficiently routed through the network in a way which encourages high bandwidth nodes to
take on more of the network load. If possible we should ensure the network is attractive and
usable by a wider audience of users, as mass adoption is the greatest mitigating factor to
many vulnerabilities present in P2P networks and solutions. In order to be able to claim
security from scale, the network must provably be able to scale. The criteria here is to be at
least as good as the current most popular anonymity network, namely Tor. More detailed
information on the solutions mentioned in this paragraph can be seen in the related works,
in Chapter 3.

4.4.1 Outline of a GossipChain

A GossipChain is collection of records collectively creating a trust chain. Versus some previous
solutions, GossipChain attempts to send finger tables less often. Against a solution like
GuardedGossip, which has a more similar overhead rate, GossipChain attempts to find
malicious nodes and remove them from consideration for gossiping or circuit creation faster
or more reliably via its checks. In GossipChain finger tables are only used when requesting
and extending a chain. For circuit building, only the collected trust chains are used.

Figure 4.2 shows an overview of the GossipChain protocol. Bounds checking witness list
checking, the lineage check, and the spot check are explained in Section 4.3. The steps of
the protocol are as follows, assuming a fully set up and stabilized Chord circle, as well as a
public source for a random seed, which is updated each round:
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Figure 4.2: A graphical overview of a GossipChain Request

1. As a prerequisite, all nodes in the network create a set of records
R = {r0, r1, ..., ri, ..., rm}, with ri a record formed from finger[i].

2. Each record will form the head of a chain, giving each node a set of chains
C = {c0, c1, ..., ci, ..., cm} with ci = {ri}

3. A node A will randomly choose a finger B from which to request gossip

4. A requests the finger table from B as well as a complete list of chain hashes (hashes =
{hash(ci)}; ci ∈ CB)from B. These chain hashes will be used to ensure the proper
chains are sent later.

5. B limits total number of requests (rmax) from any given node over a few rounds, in
order to deter and prevent denial of service attacks.
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6. A performs bounds and witness list checking on the finger table of B

7. B then uses the public seed mixed with the identifier of A (via a repeatable, known,
mathematical operation, in the simulation simply XOR) to “randomly” choose a chain
via a deterministic seeded random operation (or if requested, up to 3 chains) and a
finger with which to extend the chain.

8. The newly extended chain is then sent to A

9. A checks that the proper chain was sent, and the proper finger used to extend it, by
deriving the seed and checking against the finger table and chain hashes.

10. A performs modified bounds checking on the entire chain lineage, to be sure each
reported link is a finger of the previous node. This process is explained in Section 4.3.6.

11. A also randomly chooses some links in the chain and request their finger tables in order
to perform full bounds and witness list checking, as a spot check. This is especially
useful in longer chains, which may have nodes which honestly extended the chain at
some point, but are acting maliciously at a later time. This is explained in Section
4.3.7.

12. Assuming all checks are passed, A then accepts the chain(s)

13. Chains which fail the checks are discarded.

A only accepts a chain assuming each step is successful. A can then use the collected chains
to form routes over the Chord circle. It would do this by considering all nodes in all chains
without duplicates. It would then weight selection in a random function by the bandwidth
score of the node and an inverse of the distance of the node identifiers. Therefore, A would
be more likely to choose a high bandwidth distant node, than a low bandwidth close one.
An overview of this process is shown in Figure 4.2. In step (9), this hash check is possible
because of the linked list-style of the chain. In actuality, the hash of the chain at any step
can be checked, just by removing nodes from the end. This is because each record is capable
to be considered on its own. The only connection between records, which makes them a chain
in aggregate, is the entry of the previous records hash.
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4.4.2 Network Bootstrapping

A node’s lifecycle in the network begins when it first joins the network. The collective act
of nodes joining and leaving the network is known as churn. Similarly, a network’s lifecycle
begins with a process known as bootstrapping.

A node’s identifier is based on the IP address of the user, and a random value derived from
some publicly available component, e.g., the hash of a public blockchain at network creation.
This is in order to prevent a malicious user from having undue influence on their placement
within the Chord DHT. If a user is able to influence their position within the circle, it opens
up the network to a series of attacks which can target specific users, or create malicious
environments allowing the eclipse attack or other malicious neighborhood attacks.

Before being introduced to the network, the node must create a public private key pair. This
key pair will be used for the sections of the protocol requiring use of digital signatures. After
joining the network the first time Chord updates and stabilization occurs as normal, with an
additional GossipChain step. During bootstrapping, the node will keep track of all nodes it
views which are added to its witness list, which is a list of node identifiers it has already seen.
A set of initial GossipChains is created from the nodes it has direct knowledge of after the
underlying Chord stabilization phase is completed. This means the joining node creates a list
of initial GossipChains which contain records of it and each of its fingers.

When wishing to newly join the network, a node needs to have knowledge of a few nodes to
begin the bootstrapping process. It is assumed that these nodes are exchanged out-of-band
with trusted parties. This thesis is not concerned with what happens if all of the bootstrapping
nodes are malicious, but inherits the protections from NISAN [27] that allow bootstrapping to
be trusted so long as one node is not malicious. Therefore, bootstrapping occurs as in Chord
and NISAN, with an additional GossipChain bootstrapping step. The previously stated
creation of one chain per finger in the finger table of the node after Chord bootstrapping.
All nodes seen during bootstrapping are also added to the witness list, as in GuardedGossip
[14].

4.4.3 Stabilization and Churn

Stabilization occurs as normal in Chord, and explained in Chapter 2. The only modifications
mirror those of GuardedGossip. That is, nodes seen during stabilization are added to the
witness list, which is purged of older entries in a first-in-first-out method. After Chord
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stabilization, a gossip round is undertaken according to the aforementioned GossipChain
protocol.

The decision to expire chains is designed to introduce uncertainty of knowledge. They either
expire by time, or are chains which are gossiped to another node and are discarded after
gossiping occurs with a v = 1

4 chance. New chains are also randomly created during the
gossiping round, when chains are requested. This is done with the same v chance, or when
a gossip request cannot be answered otherwise. New chains are created by making a new
record ri with information from a random finger. ri is then set as the head of a new chain
ĉ = {ri}.

4.4.4 Circuit Creation and Bandwidth Consideration

To encourage routing in a bandwidth aware manner, the bandwidth score is based on values
reported by a bandwidth oracle. The oracle is assumed to always accurately and correctly
report bandwidth. The implementation of this is left for future research. The intuition is
that nodes with higher bandwidth are more highly propagated throughout the network, and
able to be used for routing by a higher ratio of nodes.

Within each record, a representation of the bandwidth of a node is included, and propagated.
It is from this bandwidth that GossipChain weights its node selection process during circuit
creation. To select hops for circuit creation, a node A creates a set (i.e. without duplicates)
of all nodes in all chains it knows about, with their associated bandwidths. A will then
choose in a weighted random way, its hops from within this set. From here, the node will
extend the circuit via tunneling. This can be done for any desired circuit length.

Without modification, there is an implicit bias in node selection for nearby nodes. This can
result in information leak attacks similar to those against Tarzan. This is because, clearly, a
node will receive gossip information of nearby nodes most often. It follows that they have an
outsized presence versus more distant nodes within a given node’s chains, necessitating a way
to give further away nodes a way to make up this difference.

Therefore, there is a second weight to the random selection, which is the distance of an
identifier to the selecting node. This means a node is more likely to select, although not
guaranteed to select, a node which is 1) distant and 2) high bandwidth (represented via the
score). Additionally, it will be shown that the GossipChain algorithm approaches full network
knowledge as time approaches infinity.
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scoreri = f(bandwidthri , IDri , IDnode) = bandwidthri ∗ distance(IDnode, IDri) (4.1)

The determination of the pool of selection nodes is simply: records = {record|record ∈
chains} and pool = set(r|r ∈ records). From there for each r ∈ pool, a score is created given
by the formula in Equation 4.1. There are many ways to implement a weighted random choice
algorithm, but for the purposes of this thesis and simulation, the numpy.random.choice

Python module was used, but any appropriate implementation could be used. Once each
scoreri ∈ scores is normalized to between 0 and 1, they can be used as an array of weights.
This allows for a weighted selection, with random.choice(pool, p=scores). Whether this
selection algorithm works as intended will be analyzed in Chapter 5.
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This chapter presents an evaluation of GossipChain to determine if it is successful in ac-
complishing the goals set forth at the beginning of this thesis, which will show its fitness
for secure and anonymous communication. The structure of the chapter is as follows, the
simulation developed to evaluate the solution is introduced first, followed by the series of
experiments run, and the resulting characteristics of GossipChain are outlined, which were
determined based on the outcomes of the experiments.

The implementation of GuardedGossip was provided, as written by Till Hering. The Gos-
sipChain solution re-used code where possible, especially the Chord implementation. The
GossipChain modules are written in such a way as to easily interchangeable with GuardedGos-
sip implementation by Hering, so the same experiment routines can be run against both
GossipChain and GuardedGossip.

5.1 Evaluation Criteria

In general, this solution will be compared against the state of the art mentioned in Chapter 3.
As it is an attempt to improve scalability versus Tor, complexity in terms of network
overhead (Tor’s main limitation) is the main measurement regarding complexity presented.
Comparisons will also be drawn to other solutions, such as Octopus DHT, especially in
regards to the limitations introduced via its use of a centralized authority. Success will be
defined as creating a system which is as anonymous and at least similarly as performant as
Tor, Octopus DHT and GuardedGossip. It must also leak less network information during
network information discovery, i.e. a node knows only as many nodes with their network
internet network location information as to enable anonymous and efficient routing, and to
know any more should be difficult. The details of how this is measured is split into various
subsections below. Computational complexity is assumed to be low enough to be performant
via the running of the simulation.
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5.1.1 Simulation

The simulation is coded using Python 3.8, in a single threaded application. This was chosen
to make the simulation more readily comparable to previously written simulations of other
network solutions, namely GuardedGossip, which was also written in Python 3 using a single
thread. In general, all reported results were run against a 1000 node network, except where
otherwise noted. Tests were performed in a cloud environment, and were afforded a 12-core
(24 thread) Intel Xeon processor, with 48 gigabytes of Random Access Memory (RAM). The
operating system environment used was Debian 10.

A malicious fraction of f = .2 was chosen to mimic the related works. The simulation tracks
nodes which are honest and malicious, and defines multiple scenarious under which malicious
nodes act. Malicious nodes know all relevant parameters related to bounds checking and
witness checking, and can manipulate their chains and finger tables as they see fit, in order to
attempt to break the protocol. The simulation is run in discrete measurable steps, with each
node running one cycle of the GossipChain algorithm at a time. This mirrors the original
simulation of GuardedGossip, to allow for easier step-by-step comparison.

Simulations were each run over 100 times, and the results displayed are the averages. This
was done in order to ensure the results are representative. The simulation was crafted
in such a way as to prioritize measurement. Ratios of runtime and memory consumption
should hold, however in an implemented production environment GossipChain, which would
presumably at minimum be multi-threaded there would be an improvement in runtime.
Memory consumption of the entire network of 1000 nodes was around 1GB. Runtime per
round was heavily dependent upon chain length. With chain length limited to a max of
log(n), with a network size of 100000 nodes each node took less than 1 second, to process a
request. Given the independent nature of records in relation to the structure of the chains,
in a practical implementation this is highly parallelizable. Therefore runtime would be
signifcantly lower.

The steps of initialization follow that of the protocol outlined in Chapter 4. This means that
the protocol is run after a full initialized and stabilized Chord circle is provided. In the case
of churn where nodes are free to join and leave the network, except nodes were only kicked or
joined from/to the network after the stabilization was finished, and measurements were taken.
The appropriate modifications were made incorporating the NISAN lookup process, again as
stated in Chapter 4, and as inherited from GuardedGossip, described in Chapter 2.
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5.1.2 Security and Success in the Context of GossipChain

It is fairly intuitive to pin the measurement of how secure the system is to the total unique
malicious nodes present in a node’s chains when taken all together. In an ideal system, all
manipulations of the malicious nodes are detected by the honest nodes, and the fraction
of malicious nodes within the chains should lessen over time, as the protocol runs through
multiple iterations. This means the vast majority of measurements concerns the details of
nodes’ collected chains.

Simulation Parameters

This section will go over the specific parameters (Table 5.1) of the simulation as it was tested.
When possible the parameters are as close as possible to related works, as they reported in
their requisite papers, cited in Chapter 2 and 3.

Parameter Description Value
m Number of bits in an identifier 32
N Chord circle maximum size 2m

n Number of nodes in simulation 103

f Fraction of malicious nodes 0.2
b Bandwidth score range 1 . . . 10

chainmax Max chain length log2N

nchain Number of Chains sent per round 1 . . . 3
nnew Number of new fingers added to each chain 1
γ Bounds checking threshold value

√
1
f

cs Number of chains spot checked per round 1
rs Number of records spot checked per chain in cs 1 . . . 3

v
Chance of chain removal and
new chain creation during GossipChain round

1
4

Table 5.1: Setup Parameters for the GossipChain Simulation

Care had to be taken to ensure meaningful results yet maintain an agile simulation which
could be run many times testing different parameters. Running the heavily instrumented
simulation is processor intensive, particularly in the initial stabilization phase, or when
running the cryptographic operations. In a real world implementation, where this is run using
parallelization over multiple threads (or even machines,) this would not be arduous. However,
in a single threaded application, it can add up. Therefore, the network size was chosen to
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be 1000 nodes, and the identifier space was chosen as 32-bit. Besides these, there are many
other adjustable parameters which had to be set to craft the simulation. The fraction of
colluding nodes was set to f = 0.2, which is the upper limit of what related works had set.
This was chosen to run the network in a worst-case scenario situation. The bandwidth score
of each node is set randomly on node creation, and is between 1 (least bandwidth) and 10
(most bandwidth). When requesting GossipChain information from nodes, up to 3 chains
are sent, each of which could have 1 (nnew) new finger added to it. Each chain is limited
to a length of log2N , called chainmax, somewhat arbitrarily, but related to the ability to
theoretically route to all other nodes on the circle within log2N hops, and nodes on the
chain would probably begin to repeat. There is a chance, before the responding node sends a
list of chain hashes (Section 4.4.1 step 2), that old or low bandwidth chains are discarded, if
the total number of chains are greater than 10, and new chains are created. This chance is
1
4 . Each of these parameters was considered and then tested as given in the table. For the
bounds checking threshold, γ and its value of

√
1
f , see the foundational work in NISAN by

Panchenko et al. [27].

Ideal Values of Characteristics of GossipChain

It is intuitive to see it is advantageous to minimize the fraction of malicious nodes within
any given node A′s chains. More simply the total knowledge of all nodes available for circuit
creation (from the perspective of A) should have as few malicious nodes as possible (i.e.
the fraction approaches 0 in successive GossipChain rounds). This is practically impossible,
however it is the ideal. This should be done while attempting to maximize the diversity of
nodes available for selection for circuit creation, and ensuring it is a varied and diverse list
via entropy.

These optimizations should occur within a framework allowing for a solution to the other
goals previously established which allow for a scalable and useable network. Therefore, we
desire a network that is resilient to high churn rates, complete, responsive, running with low

Variable Description Ideal Value
chainent Entropy of nodes in chains max(H) = log2N

fracmal Fraction of malicious nodes in chains 0

Table 5.2: Optimization goals of GossipChain
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bandwidth, quickly stabilized and ready to function. It is considered acceptable to sacrifice
some of the aforementioned optimization in order to exist within these constraints.

5.2 Experiments

This section will explain the experiments and how they are set up to perform these optim-
izations while maintaining the constraints mentioned in Section 5.1.2. These experiments
can talk to how the system operates within the framework defined above, which should
act as a proxy for real-world performance. After the first set of experiments, there is an
exploration of potential possible passive active attacker scenarios under which GossipChain
might operate. It is here that the ability of GossipChain to withstand passive and active
attacks is discussed.

5.2.1 Completeness and Connectivity

As stated in Section 5.1.2, we desire a network which is complete, allowing access to any
node as required. To reduce bias in used nodes and prevent attacks in the class of Range
Estimation Attacks, the pool of nodes available for circuit creation should be large enough to
be considered uniform and unbiased. To prevent network censorship, simultaneously the pool
of nodes should be limited to prevent node enumeration.

To test the completeness of the discovery process; i.e. how much of the network is accessible
at any time, and/or selectable for circuit creation, a history of nodes kept within chains was
kept. This was allowed even as the chain was removed. Against all sizes of networks that
were simulated, the connectivity of the network always approached a level sufficient for the
above stated goal. Against a network of 1000 nodes, it took roughly 150 rounds. As can be
seen in Figure 5.1, the network rather quickly reaches a high level of discovery, determined
by how quickly nodes had seen or accessed 95% of the network.

It was expected that the chains would be able to efficiently spread information, as each
subsequent round the chains grow and send more information. Therefore it is as intended that
initial rounds exhibit slow growth, followed by a large and sudden increase of seen nodes.
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Figure 5.1: GossipChain Connectivity

5.2.2 Entropy and Randomness

To prevent predictability of nodes within the chains, it is necessary that the collected list
of chains have a high level of uncertainty. To measure the level of uncertainty, the entropy
was measured. Initially there is a brief explanation of entropy from a theoretical perspective,
followed by a practical exploration. The results of the practical exploration are displayed in
Figure 5.2.

Entropy is a measure of all possible outcomes of a random variable. To do this we need to
obtain two scores, a maximum entropy and a score of uncertainty for the random variable
itself. Shannon’s original definition of entropy from an information theory perspective gave
the formula in Equation (5.1) to determine the entropy of a random variable [57]. For the
purposes of this thesis, the base is b = 2, and n is the number of nodes in the network. It
follows that the max entropy will be given by Equation (5.2)

H = −
n∑

i=1
pi logb(pi) (5.1) max(H) = log2 n (5.2)

Next, in order to solve for H in (5.1), different outcomes/events and their probabilities have
to be defined. For this there are two pools of nodes with vastly different behaviors. Honest
nodes which attempt answer GossipChain requests truthfully and malicious nodes which
answer falsely. The probabilities within GossipChain that a malicious node is selected will
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correlate directly with the fraction of malicious nodes, f . The fractions of malicious and
honest nodes are given by Equation (5.3) and (5.4), respectively. Recall that m, from Table
5.1, is the bit length of the identifier, which defines the size of the finger table.

nmal = f ·m (5.3) nhon = (1− f) ·m (5.4)

These would be the only equations that were required, if finger tables were accepted blindly–
however, they are not. Due to the bounds checking and witness checking the actual acceptance
rate is influenced by a false negative rate β and a false positive rate α. This gives the new
Equations 5.5 and 5.6, defining the events pmal and phon. Inherited from GuardedGossip are
the same bounds and witness list checks, and as was done in that work, GossipChain also
attempts to minimize both α and β, and can assume α = β. More information on this can
be found in the original work on which GuardedGossip is based [58].

p(nmal) = pmal = β
1

nmal
(5.5) p(nhon) = phon = (1− α) 1

nhon
(5.6)

Finally it is known that (nmalpmal + nhonphon) = 1. As this accounts for all possibilities.
Since there is a new node subject to the same checks each round, it also follows that any
given chain can be simplified to a list of nodes reported in records which looks as follows:
{pmal, ..., phon, ...}. Now that the probabilistic events are defined, work can begin on filling in
the entropy equation shown by Equation (5.1). The entropic nature then of the nodes chosen
in the first round is:

H1 = −
(
nmalpmal log(pmal) + nhonphon log(phon)

)
(5.7)

And each subsequent round is dependent on the previously received chains. From here a
practical analysis was done in the crafted simulation. Again, the simulation was modified to
track chain entries over time (i.e. without the v removal chance). Further, in each round all
possible new Records were considered, and the entropy then calculated as above. The results
are shown in Figure 5.2.

As expected, GossipChain never reaches the maximum entropy level given by log2(n);n = 1000.
However, versus the ancestor solution of GuardedGossip, it follows an extremely similar trend.
GossipChain takes longer to reach a stable level of acceptable entropy than GuardedGossip.
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Figure 5.2: Practical Exploration of Chain Entropy with n = 1000

The most likely explanation for this is that in the early stages it is more likely to receive nodes
less-distant to the requesting node. Later, more varied information is sent containing larger
chains with distant nodes. The composite graph comparing the two solutions is presented in
Figure 5.3.

As the amount of rounds considered are relatively few, this is considered acceptable as a similar
level of entropy is reached. To provide additional assurance that the level of randomness
provided by GossipChain is acceptable to provide defenses against passive attacks, a χ2

goodness-of-fit test was also performed. In simple terms this test allows us to test whether
the null-hypothesis is likely true that a random distribution was selected uniformly. This is
done through a comparison of the distribution with a uniform one [59].

Given a set of observed and expected outcome frequencies defined as O = (o1, . . . , on);E =
(e1, . . . , en), we can determine the χ2 statistic as:
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Figure 5.3: Comparison of GossipChain and GuardedGossip Entropy with n = 1000

χ2 =
n∑

j=1

(oj − ej)2

ej
(5.8)

Also necessary is a statistical significance level, taken historically as a = 0.05, and the degrees
of freedom df , which is one less than the total number of possible classes. This gives df = n−1.
To prove the null hypothesis the χ2 value should be less than the chi-squared critical value.
For the purposes of this thesis, this value was determined from the SciPy toolkit1 in python,
via the library sciypy.stats.chi2.ppf(q=0.05, df=9999), with n = 10000 the critical
value was 10232.

To perform the test networks of n ∈ {1000, 5000, 10000} nodes were created. After network
stabilization, a collection of nodes were sampled, and the observation set O created after
y = .95n new nodes were discovered. E is assumed to be the uniform distribution, and so

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html
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ej = y
n . After series of tests, the resulting χ2 statistics were in the range from 9000 to 10000,

although a few instances were above the critical value. The passing rate was, however, greater
than 95%, and so this test is considered successful. Meaning, it is acceptable to assume
uniform distributions of nodes in chains.

5.2.3 Complexity

It is important to judge the theoretical complexity of GossipChain and compare it to other
solutions in the related works, most notably that of GuardedGossip on which GossipChain
is based and Tor as the most popular solution. The goal is to prove the scalability of the
network. If the complexity is too high, the network is rendered unusable.

The complexity presented here is an estimation assuming a network of 50000 nodes for each
network, with the same assumed network load. In the case of GossipChain, when there was a
variable which changes in size over time, like the size of the transmitted chain, it was assumed
to be the worst case. In this case, that means it is assumed that each node is sending a
full-length chain of log(n) records. Again, with log(n) records, theoretically, all nodes should
be routable so a chain longer than that would not be necessary.

At the scale necessary to show all of the relevant related works in the graph of Figure 5.4,
the overhead differences between GuardedGossip and GossipChain are shown as negligible.
GossipChain has a slightly higher bootstrapping load. This is expected, as GossipChain
adds checks which are only processor intensive to the client, but do not involve significant
additional network overhead. In fact, the lineage check from Section 4.3.6, requires no
additional network overhead. The increase can come from the increased size chains in later
rounds of network operation.

Versus the other solutions, GossipChain represents a network overhead improvement similar to
GuardedGossip. Only Octopus [16] shows lower network overhead, however it requires a cent-
ralized authority in its operation. The mild increase in overhead compared to GuardedGossip
is expected, because in later rounds the chains grow larger than the total number of finger
tables GuardedGossip transmits. The difference however is not exceedingly large, and should
be considered in conjunction with the potential improvements in malicious node detection
shown later on in this chapter.
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Figure 5.4: Comparison of computed complexities of GossipChain and Related Works

51



5 Evaluation

5.2.4 Churn

Churn is one of the most difficult realities of a P2P network. To figure out the influence of
churn on nodes’ chains, the network was run over 400 iterations at various rates of up to 1%
of nodes leaving and joining the network per round. As stated earlier, the malicious fraction
was maintained at f = 0.2. All network parameters remain unchanged from those that exist
in Table 5.1.
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Figure 5.5: Effect of churn on GossipChain

The graphs below in Figure 5.5 and Figure 5.6 show the effect of churn rates on both
GossipChain and GuardedGossip respectively. Higher rates of churn are, as expected, more
damaging generally to both of these protocols. The initial regarding GossipChain at high
rates of churn, was that it would result in a malicious fraction rate in the chain lists relatively
close to f , because of how the network performs bootstrapping of nodes. At a rate of around
1.0% it can be seen that GossipChain behaves rather more unpredictably than expected.
This is likely a result of how nodes create new chains from each of their fingers on network
join. This means that the amount of collected nodes from their chains has the same malicious
fraction as their finger table exactly. This is in contrast to GuardedGossip which performs
more processing on the nodes which wind up in its guarded lists.
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Figure 5.6: Effect of churn on GuardedGossip

A small modification could be made to perform the bounds and witness list checking in
this step, however this will result in each node having less chains to propagate through the
network in the early stages. As crafted in the simulation, it was considered better to allow
the detection to occur later, as more information was available to prevent a case where a
node is repeatedly sending the same chain out of necessity. It is clear however, that the
network is capable of handling rates of churn, and the detection of malicious information still
works as expected.

5.2.5 Bandwidth-aware Circuit Building

In order to encourage efficient routing through the network, GossipChain is designed to be
bandwidth aware, via the bandwidth score. Although this thesis is not concerned with how
these scores are granted, it was considered advantageous to be able to incorporate some form
of bandwidth awareness to ensure the network runs efficiently.

To test the ability of the network to account for the bandwidths of the nodes, each node was
provided a random bandwidth score ∈ [1 . . . 10]. A network of 10000 nodes was created, and
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run until stabilized, using the information gained from the previous sections. Next, 10000
three-hop routes were created according to the selection procedure defined in Section 4.4.4.
each node was then categorized into a bucket according to its bandwidth, and a percentage
of the total network containing nodes of each bandwidth was calculated. Then, a tally was
done for each circuit concerning which bandwidths the nodes within the circuit had. The
results of which are given in Table 5.3.

Bandwidth Score Percentage of Network Percentage of Circuits
1 11 2.7
2 10 3.6
3 12.5 5.3
4 8 7
5 9.5 7.4
6 12 9.4
7 12.5 18
8 9 13
9 10.5 13
10 10.5 21.5

Table 5.3: Bandwidth statistics from circuit-routing through a stable network

In a network where all nodes are counted “equal”, each node should route an equal amount
of traffic. Table 5.3 refers to the selection statistics by bandwidth of 100000 circuits, each
circuit consisting of 3 nodes, n1, n2, n3. In general, if the nodes were to be grouped into ten
categories with equal probabilities, one would expect that each category would have an equal
network and route selection percentage (i.e. column 2 and 3)2. As GossipChain weights
route selection by the bandwidth score, lower bandwidths should have lower route utilization
versus their network footprint, and as the score increases the trend should diverge further
and further. As shown in Table 5.3, nodes with a bandwidth score of 10 account for only
10.5% of the network, but are selected for 21.5% of routes. It should be understood that since
the distance of the nodes is also taken into account, and it is a weighted random function,
the process is inherently stochastic, and we can only measure the trend over a significant
number of circuits.

2Note that numbers are rounded to one decimal place, and so the percentages do not equal 100%
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5.2.6 Active Attack Scenarios

In attempting to understand how the network operates, and its characteristics and behavior,
several scenarios were run under alternating conditions. Of course, the initial simulation
involved a network with blatantly malicious nodes accounting for f of all finger tables. Various
scenarios were also considered to gauge potential weak points to a network like GossipChain:
first, those who drop chains in order to propagate only malicious chains, thereby attempting
to increase the malicious fraction of nodes in honest nodes’ chains; next, if a malicious member
joins the network only to deny service when requested; third, the ability of the network to be
robust against those who act honest in some phases, but later turn to dishonesty regarding
some aspects of the protocol; and finally, if a node could arbitrarily choose its position in the
network.

GossipChain in a “Normal” Environment

During the simulation various parameters and methods were tuned to craft GossipChain into
a solution which is secure, and practically usable. It is useful at first to see how GossipChain
acts in an environment where malicious nodes would only attempt to collect information
passively, and perform no active manipulations. As expected, in this “normal” environment,
the fraction of malicious nodes remains around f = 0.2. This is expected as none of the
present checks can detect malicious behavior. Furthermore it demonstrates the uniform
randomness of the GossipChain procedure, although as seen in smaller networks it can be
more likely that the fraction lowers slightly.

Initial expectations were that in a environment where the only manipulations are based on
characteristics of chord, the fraction of nodes within the collected chains which are malicious
were to be lower than f . As can be seen in Figure 5.8, there is a steady downward trend
acting asymptotically to a percentage lower than the expected 20%, and in smaller networks
to around 7% fraction of malicious nodes. This is because within the simulation, it rather
aggressively performs the spot checks from Section 4.3.7. The spot check is performed both by
the receiving and sending node. If the sending node first discovers the chain to be malicious,
it will simply not propagate it. To see this in action, Figure 5.9 shows the malicious fractions
in a network which does not perform the spot check, while malicious nodes perform finger
table manipulations.
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Figure 5.7: Malicious node perform no attack scenarios, and act honestly

Since there is no real penalty for refusing to answer the protocol (the effects of which are
described below,) this is actually fine. If the sending node discovers it is holding a malicious
chain, it marks it as “not to be propagated”, and also marks the node which failed the spot
check as “potentially malicious”. It removes the failing node from consideration for circuit
building, but maintains the ability to use the remaining nodes from the chain. The reasons
for this are two-fold: It is not clear if the node was acting honestly on creation-time of the
record, or not, and it would minimize the pool of available nodes too much. As a future work,
these checks could be further developed allowing for more thorough analysis of a chain’s point
of failure.

Dropped Chains

The first scenario evaluated, shown in Figure 5.10, is when an attacker attempts to drop
majority honest chains and/or propagate only malicious nodes within its chains. As can be
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Figure 5.8: Malicious nodes perform finger table manipulations only

seen in the figure, this is generally detected showing a minimal effect on the network when
compared to Figure 5.8 with only finger table manipulations.

This is due mostly to the lineage check, described in Section 4.3.6. The lineage check enforces
that each node that follows in a chain is a plausible finger of the one before it. Since the
malicious nodes are spread throughout the network, and arbitrary positioning within the
Chord circle is handled via other methods as described and then verified in Sections 4.3.1 and
5.2.6. This means to have a fully malicious chain accepted by another node, there must be a
set of nodes with the finger relationship which collude and are malicious. This is naturally
not impossible, but as shown here it is in a practical sense unlikely.

Denying the Protocol

Next, it was important to determine the susceptibility to denial of service if a node simply
refuses to answer the protocol, attempting to starve the network of gossip information. There
are few real protections against this in GossipChain, only the expectation that for a node not
to be considered malicious, it must respond to the protocol at minimum with a new chain.
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Figure 5.9: Malicious Fraction of Nodes without running the Spot Check

It is expected that this behavior is possible, in any case. However, it should not be advantage-
ous to an attacker, unless the malicious fraction is far above f = 0.2. This is because more
would be gained from attempting to respond with tainted information. Since nodes have no
incentive to block and wait for information, and only to ask again in the next round from
a different node. Within the simulation, nodes are equally likely in each round to forward
information from any finger, and therefore at most a malicious actor can hope to stymie one
round of information transfer for any node which has them as a finger, and which happened
to choose them as a gossip source.

This prediction is borne out by the graph in 5.11. Again, this behavior affects the network
little. This is even without counting those who refuse to respond to requests as inherently
malicious. Should an attacker also refuse to send information in that step throughout the
whole protocol, their chains would naturally “age-out” of consideration as more vocal nodes
send information. And therefore the malicious intent does not even need to be detected,
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Figure 5.10: Malicious nodes drop majority-honest chains

but instead will cease to matter in the natural course of running the network. This is also
a potential reason this chart shows a quicker decline in the malicious percentage of nodes
within the chains more quickly than the others for the 4000 node network.

Delayed Dishonesty

Another issue, one which the spot check, is intended to solve is what were to occur if a node
begins the protocol honestly, in order to obtain presence in many chains, and then begins to
propagate malicious information, or modify collected chains. To measure this, each malicious
node was set to turn malicious after 25 rounds. The expectation is that when a node turns
malicious it would be detected by the spot check. The graph should show a steep drop off
around the fiftieth round, this is done as a further verification that the procedure allows for
the detection of malicious nodes.

Here a few decisions on how to react to such behavior had to be made. Chiefly, when a node is
discovered as dishonest, what should the honest node do with the now semi-invalid chain? An
initial expectation was that as the spot check marked chains as unavailable for propagation,
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Figure 5.11: Malicious nodes refuse to propagate chains

that the whole chain became untrustworthy. However, to do this would unnecessarily limit
the amount of nodes available for circuit creation in a later stage. Therefore, it was decided
that although a node will no longer gossip that chain to others, it will keep the chain until it
naturally ages out or is removed probabilistically during the gossiping phase. However, it
keeps track of the nodes which failed the spot check and removes them from consideration in
circuit creation.

As the spot check, described in Section 4.3.7, adds uncertainty to when a node can be checked
regarding the protocol, and even could be done through tunneling to hide the origins of the
requester, this sort of behavior is risky for an attacker wishing to remain undetected. In
Figure 5.12 we see, again, the impact of this sort of behavior is minimal. As nodes begin
to propagate false information, either through the bounds and witness list checking, or via
the spot check. It should be expected however, that over a longer period of time and runs,
the graph shown in the figure should have a higher average malicious fraction than those
active scenarios referenced earlier in the earlier subsections of this section (i.e. 5.2.6). Here
it is most likely again the stochastic nature of the various networks that it is statistically
similar.
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Figure 5.12: Malicious nodes begin honestly, attempting to get into as many chains as possible,
then act dishonestly

Manipulation of Chord-circle Location

The process of identifier assignment described in Section 4.3.1, occurs during bootstrapping.
As all in-network nodes have out of band information about the time of the sample of
the public source of information, a bootstrapping node can verify the creation of another
nodes identifier. For the simulation, this was simple XOR operation of an IP address-like
structure, and this public random source. This means, that when an attacker attempted to
join the network with a falsified ID, which did not match the IP address connecting to its
bootstrapping node, it was rejected from joining the network. Therefore it can be seen that
the network would only be susceptible to manipulation of the chord circle location if the pool
of bootstrapping nodes were colluding and also malicious.
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6 Conclusion

With the ever prevalent nature of both interconnected systems and surveillance of those
systems, privacy and security are increasingly at a premium. These two overarching goals
have precipitated the creation of various anonymous communication networks. All of these
networks have sought to provide methods to discover intermediary relays through which to
route traffic, while obfuscating this information from outside observers.

The largest network providing this capability worldwide is Tor [11], which does it in a
centralized manner. The use of centralization can present a series of problems. First,
centralized servers can create bottlenecks causing issues with scalability. They can also
present uniquely attractive targets for attack. Especially considering they necessarily know
the entire network state. Similarly, decentralized solutions cannot be done in a naive way,
because they are constituted by a series of untrustworthy network participants.

Related works, gone over in Chapter 3, have attempted to solve this problem in various
ways. Some improved on Tor’s centralized approach by adding efficiencies to the discovery
protocol. Others crafted decentralized solutions, which although protecting against one issue
of centralized approaches, were found lacking for various reasons. Either through network
overhead, required centralized components, or easy network participant enumeration.

GossipChain represents an extensible protocol which allows users to obtain network in-
formation and communicate in a way which is secure and anonymous. It builds upon work
pioneered by Chord [24], GuardedGossip [14] and NISAN [27], but incorporates or implements
their innovations in a novel way through trust chains. The use of trust chains to form a
lineage of network relationships allows a more thorough checking of malicious behavior. The
effectiveness and efficiency of this design choice was demonstrated in 5.

It was demonstrated that GossipChain has an acceptable level of complexity regarding
network overhead, lower than many related works, most importantly Tor. It also exhibits an
acceptable level of security against a fairly malicious environment with an attack fraction of
f = 20%, a fraction that meets or betters the related works. The networks run were large
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6 Conclusion

enough to imply scalability, and it showed resilience against expected network actions like
churn. Via measurements of entropy and through the χ2 metric, it was shown that node
selection is roughly uniform, and resistent to passive attacks. Furthermore, the introduction
of a bandwidth statistic while introducing minimal additional network overhead allowed for
routing in a bandwidth aware manner, and encourages a load-balanced network.

Future work turning it into a usable network for practical purposes would only result in
efficiency gains versus the simulation. Most interestingly, it was showed that introducing the
novel spot check and lineage check allows for the crafting of a node selection pool for circuit
creation with a malicious fraction around that of f . Even better, during the scenarios when
those checks were made more aggressive, it allowed for a lower fraction than f , although the
degree to which it was lowered was heavily dependent on network size.

In short, GossipChain shows the ability of trust chains to improve the security of network
information discovery protocols in a scalable manner. It provides a promising base on which
to extend various checks–namely the spot check and lineage check, which already provide
improved effectiveness and security in the face of malicious nodes, on top of previous works’
bounds and witness list checking.
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A Witness List Check Algorithm

1 def witnessListCheck (node , finger_table ):
2 """ Performs Witness List check on finger table """
3

4 # Decide randomly if mismatching witnesses will be checked
5 check_failed_witness_ids = check_follow_through_probability
6

7 passed = True
8 failed_witness_ids = []
9 for i, presented_finger_id in finger_table :

10 # Get best finger for this entry from our witness list
11 witness_finger_id = better_finger in witness_list or

presented_finger_id
12

13 if not witness_finger_id == presented_finger_id :
14

15 # Check if the closest Witness List entry is closer
to the ideal finger , than the presented one

16 witness_distance = witness_finger_id - node.
ideal_finger_ids [i]

17 if witness_distance < 0:
18 witness_distance += size_id_space
19

20 presented_distance = presented_finger_id - node.
ideal_finger_ids [i]

21 if presented_distance < 0:
22 presented_distance += size_id_space
23

24 if witness_distance < presented_distance :
25 passed = False
26 if check_failed_witness_ids :
27 failed_witness_ids . append ( witness_finger_id )
28 else:
29 break
30

31 # Check if witness node is actually alive
32 for witness_node in failed_witness_ids :
33 if alive( witness_node ):
34 passed = False
35

36 return passed

Listing 1: Witness List Check Algorithm
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B Bounds Check Algorithm

1 def boundsCheck (self , node , finger_table ):
2 """ Performs Bounds Check on finger table """
3

4 # Use global value for bounds checking thresholld
5 gamma = threshold
6

7 # Compute finger table deviation
8 distance_sum = 0
9 for i, finger_id in enumerate ( finger_table ):

10

11 distance = finger_id - node. ideal_finger_ids [i]
12 if distance < 0:
13 distance += size_id_space
14

15 distance_sum += distance
16

17 node_density = distance_sum / self.chord. size_ft
18 passed = ( node_density <= self. expected_node_density *

gamma)
19

20 return passed

Listing 2: Bounds Checking Algorithm
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C Spot Check Algorithm

1 def spot_check (self , chain):
2 entrys = random . sample (chain , [1...3])
3 for entry in entry:
4 node = self.chord. getNodeByID (entry. getSender ())
5 if not node:
6 return False
7

8 ft = node. getFingerTable (self)
9

10 if not self. boundsCheck (node , ft) and not self.
witnessListCheck (node , ft):

11 return False
12

13 return True

Listing 3: Spot Check Psuedocode
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D Acronyms

PKI Public Key Infrastructure
CA Certificate Authority
Kad Kademelia
DHT Distributed Hash Table
DHTs Distributed Hash Tables
PIR Private Information Retrieval

P2P Peer-to-Peer
DKG Distributed Key Generation
ORAM Oblivious Random Access Memory
SGX Security Guard Extensions
TEEs Trusted Execution Environments
RAM Random Access Memory
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